
1

Computer Sciences Corporation
Numerical Aerodynamic Simulation

NASA Ames Research Center, M/S 258-6
Moffett Field, CA 94035-1000

(415)604-4319
e-mail: f ineberg@nas.nasa.gov

1. This work was supported through NASA contract NAS 2-12961.

Abstract
“Multidisciplinary” applications are an important class of applications in the area
of Computational Aerosciences. In these codes, two or more disciplines are uti-
lized to model a single problem. To support such applications, it is common to use
a programming model where an application is divided into several single program
multiple data stream (SPMD) codes, each of which solves the equations for a sin-
gle discipline. These SPMD codes are then bound together to form a single “multi-
disciplinary” application in which the constituent parts communicate via
point-to-point message passing routines. Unfortunately, simple message passing
models, like NX, only allow point-to-point and global communication within a
single system-defined partition. This makes implementation of multidisciplinary
applications quite difficult, if not impossible. In this paper, the design, implemen-
tation, and use of theMap library, designed at NASA Ames Research Center, is
described. The Map library uses a single system group (partition) and allows the
user to define arbitrary groups of nodes within the partition. Because these groups
are user-defined, there is no system barrier preventing them from communicating.
Thus, inter-group communication is possible. In addition, a special version of the
NX “global” library is provided to support collective communication within these
groups.

The Map Library — A Flexible Gr oup
Mechanism for the Intel Paragon XP/S

Report RND-93-015 November 1993

Samuel A. Fineberg1

2

1.0 Introduction

“Multidisciplinary” applications [BaW93] are an important class of applications in
Computational Aerosciences. In these codes, two or more disciplines are utilized
to model a single problem. Some disciplines involved in aerospace research
include fluid dynamics, thermal analysis, structural analysis, propulsion, etc. To
support such applications, it is common to use a programming model where an
application is divided into several single program multiple data stream (SPMD)
codes, each of which solves the equations for a single discipline. These SPMD
codes are then bound together to form a single “multidisciplinary” application in
which the constituent parts communicate via point-to-point message passing rou-
tines.

Parallel systems, however, typically divide their processors among applications or
users by defining apartition. Each partition consists of a set of nodes, memory, and
typically a single user/application. This type of resource management is also called
space sharing.A partition is a system managed resource, and partitions are pre-
vented from interacting to provide security. Therefore, partitions are not, ideally,
allowed to crash or otherwise interfere with other partitions. Using a partitioned
model is useful because it allows the system to provide low overhead security and
to have a base scheduling unit. Unfortunately, simple message passing models, like
NX, only allow point-to-point and global communication within a single system
partition, where all processors in the partition must participate in the operation.
This makes implementation of multidisciplinary applications quite difficult, if not
impossible. TheMap library was developed to enable users of the Intel Paragon
[Int91] to execute non-homogeneous (e.g., “multidisciplinary”) applications, and
to provide a more flexible mechanism for defining groups of processors within a
single system partition.

1.1 Design T rade-offs

On the iPSC/860, such programs are supported by using theinter-cube communi-
cation library [Bar91]. Instead of building a flexible group mechanism, this library
works with NX’s built-in partitioning mechanism. Groups are defined as system
partitions, orsubcubes in this case. The library then uses the mechanism that
allows operating system messages to bypass the security barriers between system
partitions. Because the iPSC/860’s operating system (NX) uses the same commu-
nication mechanism as user programs do, there is no performance penalty caused
by using system messages for inter-partition communication. Because this method
bypasses the security and partitioning mechanism provided by the OS, some fea-
tures are lost. First, security is compromised, allowing user applications to inter-
fere with one another. Furthermore, a user’s application appears to the system as
several jobs. This means that the single scheduling unit normally provided by sys-
tem partitions is lost. As a result, system utilities such as NQS (the batch sched-
uler) can not schedule jobs that use the inter-cube library.

3

On the Paragon, the inter-cube library solution is not possible. The Paragon operat-
ing system, OSF1/AD, communicates using a mechanism, “NORMA IPC,” that is
quite different from that used by user applications. This mechanism is unsuitable
for user applications because it is difficult to use and has inadequate performance
as compared to the Paragon’s NX message passing library [TrM93]. The Paragon
also provides standard UNIX communication mechanisms such as pipes and sock-
ets that can be used for inter-partition communication. Unfortunately, none of
these provide adequate communication performance, and they are far more diffi-
cult to use than the standard NX mechanism used within partitions. Further, it is
desirable to maintain the system partitioning model for security and scheduling.
Thus, an ideal solution would appear to the system as a single partition of the sys-
tem.

1.2 The Map Library

The Map library uses a single system partition and allows the user to define arbi-
trary mappings within the partition. Each mapping is a one-to-one map from a
user-defined node number to a node number defined by the system. This allows the
node numbers to be re-mapped such that different subsets of the system partition
may be defined. Each of these subsets will consist of a set of node numbers from 0
to S-1 (S is the number of nodes in the subset) where S<=P (P is the number of
nodes in the partition) corresponding to nodes within the system partition. Because
these subsets (groups) are user-defined, there is no system barrier preventing them
from communicating. Thus, inter-group communication is possible as long as the
sending node has the address of the destination node within some map that is
defined locally.

While the Map library is intended to be general and can be used to define overlap-
ping or non-overlapping groups for any purpose a user may desire, it is expected
that it will generally be used to separate modules within a large program. This is
needed for non-SPMD programs where each individual data stream may need to
perform point-to-point and collective communication internally as well as point--
to-point communication with other data streams. For example, in Figure 1, collec-
tive operations (e.g., global synchronization -gsync) can occur within either
Group A or Group B. In addition, as shown, nodes within the groups can commu-
nicate using point-to-point mechanisms (e.g.,csend/crecv). In addition, nodes
in Group A can communicate with nodes in Group B (or vice versa) as long as the
nodes have the mapping information for the other group.

Thus, the Map library provides the functionality needed for multidisciplinary
applications including flexible group definition, support for multiple binaries, col-
lective communication among arbitrary processor sets, etc. It provides this func-
tionality while still preserving the system partition model, thus facilitating security
and scheduling. It does not, however, ensure safety within a user partition. There-
fore, there is no mechanism to protect user-defined groups from each other.

4

2.0 Maps

The primary feature of the Map library is themap. A map is a one-to-one function
from a logical processor number, or rank, to a system-defined processor number.
Therefore, one could think of a map as a table containing an ordered list of sys-
tem-defined processor numbers where a processor’s rank within the map is the
same as its position within the list. Then, to determine where a message is to be
sent, one specifies a map and a rank. This information is then sufficient to deter-
mine the system-defined processor number of the destination processor. The sys-
tem-defined number can then be used for the actual communication. Conversely,
because a map is one-to-one, it is possible to determine the rank of a processor
within a map as long as one knows the system-defined processor number and the
map in which the processor’s rank is defined.

A map is a simple one-to-one function and has several possible uses. However, in
particular, it is expected that this mechanism will be used for defining groups of
processors within system partitions. Therefore, each individual map will represent
a group of processors.

The Map library provides mechanisms for defining and manipulating maps. In
addition, it provides mechanisms for collective communication between proces-
sors that are defined within a map and it provides a mechanism for starting jobs on
subsets of the Paragon’s processors.

The actual structure of a map is hidden from the user. Instead, maps are referred to
via an integer id. In addition, maps are a purely local data structure. Therefore,
map 1 on node 8 may represent a completely different mapping than map 1 on
node 5. These design decisions make the Map library both fast and extensible. By
hiding data structures, the underlying mechanisms can be modified to improve per-
formance and functionality. Forcing maps to be a local data structure means that no

Figure 1: Example of multiple groups within a partition.

System Partition

Group A

Group B
Node 1

Node 1

csend/crecv

Node 0

csend/crecv

gsync

Node 2
Node 0

5

map manipulation operations require communication. Thus, they are all fast. The
current implementation of the Map library is optimized such that the most com-
mon map operations all execute in constant time. More details on this will be pre-
sented in Section 5. Unfortunately, this performance is provided at the expense of
safety. Therefore, it is up to the programmer to make sure that programs within a
partition do not interfere with each other and that the correct map is used for a
given collective communication operation. Further, because the debugger does not
know about maps, it may be more difficult to debug codes using this library.

3.0 Using the Library

In this section the basic usage of the Map library will be described. It is assumed
that the reader of this section is familiar with the NX message passing library on
the Paragon. In addition, the reader should be familiar with the Paragon’s collec-
tive communication (global) library.

While all functions in this section are shown implemented in C, they are also avail-
able under FORTRAN. In FORTRAN all of the functions with no return value cor-
respond to FORTRAN subroutines (i.e., to usemap_init() one should “CALL
MAP_INIT() ” from FORTRAN). Functions that do return a value correspond to
FORTRAN functions of type “INTEGER.”

3.1 Initializing the Library

Before doing any library calls, each node must call

map_init()

to initialize the basic map data structures and to define an initial map. This initial
map, referred to asmap_all , contains all of the compute nodes in the system par-
tition with their node numbers within the map set to the same value as they would
be in the system partition. Therefore, the NX node number equals the node number
within map_all . Note:map_all does not contain the host service node. The
host node does not initially belong to any map and its node number (for point--
to-point communication) can only be determined with themyhost() call.

3.2 Defining Maps

A map is a local data structure managed by the map library. There are two basic
methods for creating maps. These functions create a map based on either a list of
node numbers or a range of consecutive node numbers. The functions are defined
as follows:

int map_create_range(int low, int high, char *mapname)

creates a map with the name defined inmapname consisting of the nodes whose
system-defined node number is betweenlow andhigh ; and

6

int map_create_list(int *list, int num, char *mapname)

creates a map consisting ofnum nodes where node numberi is mapped to sys-
tem-defined node numberlist[i] . The new map can then be referred to by the
integer map number returned by the map creation function.

To free the resources associated with a map, the

map_free(int map_num)

function may be called. To assist in the defining of maps, a function is provided to
allocate lists of nodes. This function:

map_allocate_list(int n, int *list)

takes as input the number of nodes that one wishes to allocate (n) as well as an
array with space allocated to hold the list (list). The function then attempts to
allocate the requested number of nodes from its free list. Each node in a system
partition will only be allocated once, and if more nodes are requested than are
available, a run-time error will occur. This list can then be used as input to
map_create_list. Lists can also be accessed from within existing maps.

map_print_list(int map_num)

prints out the list used to create the map referenced bymap_num (to standard out-
put). Further, a list can be extracted from an existing map.

int map_list(int map_num, int *list)

returns the number of elements in the list used to create the map referenced by
map_num, and a pointer to that list is returned inlist . This function can also be
used to distribute maps among nodes. To send a map to another node, a program
must first get the map list (i.e., use themap_list function), then the list can be
sent to any other nodes in the system and those nodes can create their own copies
of the map using themap_create_list routine.

3.3 Using Maps

There are two basic map operations. These aremap andmap_inv.

int map(int map_num, int rank)

returns the system node number of the node numberedrank within the map
referred to bymap_num.

int map_inv(map_num, int num)

performs the inverse operation. Therefore, it returns the rank of the node with the
system-defined node numbernum within the map referred to bymap_num.

These functions can then be used for point-to-point communication. For example,
to send to node 5 in map 1 the following command could be used:

7

csend(type, buf, n, map(1,5), 0);

Further, map_inv can be used to determine who a message came from relative to a
known map. Therefore, if a node receives a message and knows that it is from a
node in map 5, it can determine the sender as follows:

crecv(type, buf, n);

sender = map_inv(5, infonode());

To facilitate NX style programs, several standard functions are provided.

int map_mynode(int map_num)

returns the node number of the calling node relative to the map pointed to by
map_num or returns -1 if the calling node is not a member of the map.

int map_numnodes(int map_num)

returns the number of nodes listed in the map referred to bymap_num. Finally,

int map_infonode(int map_num)

returns the node number of the sender of the last message received relative to the
map pointed to bymap_num.

3.4 Collective Communication

Collective communication is performed via all of the standard Intel “global” rou-
tines (e.g.,gsync , gdhigh , etc.). These exist in the Map library in a modified
form with an additional parameter, the integer map number (which defines the map
in which the operation should occur). This map number is added to the routines
argument list as the last parameter. For example, the map version ofgdlow is
defined as follows:

gdlow(double x[], long n, double work[], int map_num)

andgsync is defined as,

gsync(int map_num).

The only additions to the collective communication library are two functions for
broadcasting. These are needed because it is not desirable to modify the existing
csend function, and without doing so, the normal NX broadcast mechanism (i.e.,
sending to a negative processor number) will not work properly within a map. To
facilitate different needs, two different broadcasts are provided. Neither of the two
broadcasts require the broadcasting node to be a member of the map in which the
message is being distributed. The first command,

map_bcast(int type, void *buf, int count, int ptype, int map_num)

is intended to preserve the semantics of standard NX broadcasting, i.e., the proces-
sors receiving the data use thecrecv command. However, this necessitates the
use of a linear time complexity algorithm, somap_bcast is quite slow. This

8

function should not be used for most purposes. Instead, the “fast” broadcasting
commands that have a log complexity should be used. To broadcast data using the
fast algorithm, the sending node executes;

map_fbcast_send(int type, void *buf, int count, int ptype,

 int map_num)

wheremap_num is the map number used locally to refer to the destination map.
Then, the members of the map receiving the data execute;

map_fbcast_recv(int type, void *buf, int count, int ptype,

 int map_num)

This means that the receiving nodes must have the map information for their map.
This may not be the case, particularly when bootstrapping a new map. In those
cases themap_bcast command must be used. Themap_fbcast routines have
performance similar (i.e., within a few percent, sometimes faster sometimes
slower) to standard NX broadcasting.

4.0 Compiling and Loading

4.1 Compiling Hostless Programs

The simplest way to use the library is to use “hostless” programs. The filemap.h
(or fmap.h for FORTRAN programs) is “included” in the code and linked with
the map library. For example,

cc -c -I<ipath> test.c

cc test.o -L<lpath> -o test -lmap -nx

where<ipath> is the path of the include directory wheremap.h is found and
<lpath> is the directory wherelibmap.a is found. For FORTRAN, a similar
method is used. For example,

f77 -c test.f

f77 test.o -L<lpath> -o test -lmap -nx

where<lpath> is the directory wherelibmap.a is found.

4.2 Compiling Host/Node Programs

The real power and flexibility of the Map library is revealed when multiple bina-
ries are used. For these programs it is necessary to use the host/node model of pro-
gramming. To compile a “host” or “node” program, simply link with the map
library, ensuring that “map” appears before “nx ” in the list of libraries. For exam-
ple,

cc -c -I<ipath> host.c

cc host.o -L<lpath> -o host -lmap -lnx

f77 -c node.f

9

f77 node.o -L<lpath> -o node -lmap -lnx

The standard NX commands provided by Intel can be used for creating partitions
and loading jobs onto nodes. By using themap_list andmap_create_list
commands, one can send map information defined in the host program to newly
created node processes, using the host program to disseminate information about
maps to disparate groups.

4.3 Automatic Map Creation

A facility is provided for automatically creating an entire set of processes and ini-
tializing a map containing only the processes that are a member of that set. There-
fore, if a multidisciplinary application consists of more than one distinct code,
each of these could be started separately from its own binary (i.e., “a.out” file) and
the nodes running each particular binary would define a map that contains only
those nodes running the same binary. For convenience, a system-defined constant,
map_home is used to refer to this initial map. Thus, processes created with this
method have two pre-defined maps,map_all , in which all compute nodes are
contained andmap_home, which contains the nodes whose processes were cre-
ated at the same time. If this mechanism is not used, node programs will have no
information about the group in which they were created.

There are two ways to use this facility. The first method involves the use of a spe-
cial “main” program. The standard program “main” is replaced with a map version
of “main” that takes care of initializing the Map library and createsmap_home. In
C, main is renamedmap_main in the “node” programs. Therefore, a “hello
world” node program might appear as below:

#include <nx.h>

#include <map.h>

map_main(){

printf(“Hello from node %d\n”, map_mynode(map_home));

}

The node program must then be linked as follows:

cc -c -I<ipath> node.c

cc <mpath>/map_main.o node.o -L<lpath> -o node -lmap -lnx

where<mpath> is the path ofmap_main.o . A node program linked in this
manner mustnot call map_init . Instead, this is done within the newmain func-
tion. All argc/argv parameters will be passed automatically through to the
user-defined map_main function. For FORTRAN programs, the process is more
complicated. First, the “program xxx ” statement must be changed to a “sub-
routine map_fmain .” Therefore, a FORTRAN “hello world” could appear as
follows:

subroutine map_main

10

include ‘map.h’

print *, ‘Hello from node ‘, map_mynode(map_home)

end

The program is then compiled with f77 and linked with cc as follows:

f77 -c -I<ipath> node.f

cc <mpath>/map_fmain.o node.o -L<lpath> -o node -lmap -lf -lm -lnx

Note thatcc is used instead off77 because the new “main” program is written in
C. In addition, it is vital that the-lf and-lm be added on the link command line
so that all of the expected standard FORTRAN functions will be available.

The other method is to call themap_init_node function at the beginning of the
node program. This function is called with no parameters and initializes the map
data structures includingmap_home. Note that with either of these approaches, a
node program shouldnot call map_init. An example of how to use this func-
tion from C follows:

#include <nx.h>

#include <map.h>

main(){

map_init_node();

printf(“Hello from node %d\n”, map_mynode(map_home));

}

Similarly from FORTRAN one simply calls this function. Therefore, the example
becomes the following:

program hello

include ‘map.h’

call map_init_node()

print *, ‘Hello from node ‘, map_mynode(map_home)

end

The host program is compiled as before, and the NX environment is established in
the standard way (i.e., withnx_initve ()). However, to load a program onto a set
of nodes, one must use the function

int map_loadve(int node_list[], int num_nodes, int ptype,

int pid_list[], char *path, char *argv[],

char *envp[])

This function takes the same arguments as thenx_loadve command and essen-
tially performs the same function. However, it also creates a map defined by the
list specified in node_list[] and returns the map number of this new map. In
addition it interacts with the “main” routine ormap_init_node () function
linked to the node program in order to set upmap_home.

11

As an example, the following host program will run two instances of the program
“hello,” each on half of the allocated nodes (assuming the number of nodes is
even, if not, one node will be left out). Note that the number of nodes is specified at
run-time using the command line parsing ability ofmap_initve() .

#include <stdio.h>

#include <nx.h>

#include <map.h>

void main(int argc, int *argv[]){

int *list, map1, map2;

int *pid_list;

/* initialize system partition */

nx_initve(NULL, 0, NULL, &argc, argv);

setptype(0);

/* initialize map library */

map_init();

/* allocate space for node list */

list = (int *)malloc((map_numnodes(map_all)/2) * sizeof(int));

/* allocate space for pid list */

pid_list = (int *)malloc((map_numnodes(map_all)/2) *

sizeof(int));

/* get a list containing 1/2 of the node */

map_allocate_list(map_numnodes(map_all)/2, list);

printf(“Running 1st hello\n”);

/* start “hello” on the listed nodes */

map_loadve(list, map_numnodes(map_all)/2, 0, pid_list, “hello”,

NULL, NULL);

/* allocate another list */

list = (int *)malloc((map_numnodes(map_all)/2) * sizeof(int));

map_allocate_list(map_numnodes(map_all)/2, list);

printf(“Running 2nd hello\n”);

/* start “hello” on the rest of the nodes */

map_loadve(list, map_numnodes(map_all)/2, 0, pid_list, “hello”,

NULL, NULL);

printf(“Waiting\n”);

/* wait for everything to complete */

nx_waitall();

}

5.0 Implementation

This briefly describes some of the internal implementation features of the current
version of the Map library (Version 1.0 beta as of 9/93). All of these details are
subject to change in later versions of the library. The primary goal of this initial
implementation of the library is performance. In particular, several trade-offs are

12

made where memory is sacrificed in favor of some performance enhancement fea-
ture. In addition, several hard-coded limits are imposed. In particular, the current
version of the map library only allows up to 256 maps. This restriction on the num-
ber of maps will likely be removed in later versions of the library.

5.1 Map Data Structure Implementation

Maps are represented internally by the following C data structure:

static struct mapping {

int *list;

int *inv_list;

int mapsize;

char *mapname;

} maplist[NUM_MAPS];

whereNUM_MAPS is predefined to be 256. In this data structure,list represents
the linear list of physical node numbers used when creating a map (i.e.,list[i]
is the system node number of the node with ranki in the map).inv_list is a
linear list withnumnodes()+1 elements (i.e., one entry for each node in a sys-
tem partition plus an extra for the host node) containing either the rank of the cor-
responding system node within the map or -1 (the value of the constant
MAP_UNDEF) if the node is not a member of the map. This mechanism wastes
memory, especially if the system partition size is large, but allows constant time
inverse mappings. This inverse mapping function turns out to be used frequently,
so it is important that it be fast.mapsize is simply the number of nodes within a
map andmapname is a character name for a map. Note that currently the map
name,mapname, is unused. However, this parameter is added so that maps can be
referred to by a name instead of just a local number and to make it possible to
develop a map-server in the future.

The map list is managed using a linear “free” list and map structures can be
removed from and added back to the free list by “creating” or “freeing” a map.
When a map is created, the map data structure is allocated from the free list. Then,
the map’s list is created either by setting the value of the list pointer to a user-de-
fined list or by creating a list from information provided (e.g., from a range of node
numbers as inmap_create_range()). Then, the “create” function allocates
memory for and defines the inverse mapping list, and finally sets the size and name
of the list appropriately.

This definition of a map allows themap andmap_inv functions to be very fast.
map() is simply implemented as follows:

int map(int map_num, int rank){

return(maplist[map_num].list[rank]);

}

andmap_inv() is equally simple:

13

int map_inv(int map_num, int num){

if (map_num == MAP_ALL) return(num);

return(maplist[map_num].inv_list[num]);

}

Because these are likely to be the two limiting cases for performance (i.e., one of
these is called at least once for every map library function), it is important that they
be as fast as possible. In particular, if the inverse list was not provided, themap_-
inv() function would be O(N) complexity (this is because a binary search will
not work without sorting the map first). Instead, this mechanism returns an inverse
mapping in constant time with a cost of only 4 bytes of memory per node in the
system-defined partition.

5.2 Collective Communication Implementation

The global library included in the current implementation of the Map library con-
sists of modified source code forlibnx.a , as provided by Intel with Paragon OS
Transmittal 10. All of the “global” calls in the NX library are implemented using
standard send and receive calls. Therefore, the only modifications needed are:

1. An extra parameter is added to each function for the map id.

2. The node number in every send and receive call is replaced by the appropriate
call tomap() .

3. Calls to helper functions such asmynode() , infonode() , etc. are replaced
by the appropriate map versions.

The only other problem with this mechanism is for broadcasting. Normal NX
broadcasting is accomplished through the use of a negative node number when
calling csend() . Modifying this mechanism is difficult, and might have some
unwanted side effects (i.e., reduction in performance or increase in complexity for
normal sends and receives), so separate map broadcasting mechanisms are pro-
vided instead. When broadcasting within maps, there are several difficulties. First,
it may be desirable to be able to broadcast to a map one is not a member of (i.e., a
host may want to broadcast to a set of nodes). Further, nodes may not know what
map is being broadcasted to when they receive a broadcast message. For example,
if a host wants to create a new group of nodes, it may simply broadcast a map list
to the members of the new group. However, because the map has not been created
yet, the nodes do not yet know the members of the group to which the message is
being broadcasted. Finally, for backward compatibility, it is desirable to have a
broadcasting mechanism that could be received by a standardcrecv() call as is
the case for NX style broadcasting.

These issues led to the development of two broadcasting mechanisms. The first,
map_fbcast_send() andmap_fbcast_recv() are fast mechanisms for
broadcasting when all nodes have the mapping information for the group being
broadcasted to. This function first sends the data to node 0 of the map (thus, allow-
ing non-members to broadcast), then uses a recursive doubling algorithm to dis-

14

tribute the data. Note that while recursive doubling may not be the optimal
algorithm for a mesh, it minimizes the number of send/receive calls, and since
there is no guarantee that a map will be a mesh, this is the best one can do. The per-
formance of this function is O(log2N) and has been measured to be approximately
the same as NX broadcasting (faster in some cases, slower in others).

The second broadcasting mechanism,map_bcast() , simply sends data items
one at a time to each node in a group. In the fast broadcast mechanism, a commu-
nication tree is formed. Therefore, the receiving nodes may have to send one or
more messages to other members of the receiving group. This means that a special
receive function is needed and the receiving nodes must know about the other
members of their group. However, with map_bcast() no communication is
needed after receiving the data, so the receiving nodes can simply use the standard
crecv() function. Further, the receiving nodes do not need to know the map
defining the receiving group. Unfortunately, this mechanism is quite slow, particu-
larly for large machine sizes (its complexity grows O(N)).

6.0 Conclusion

In this paper the Map library for the Paragon XP/S has been described. The Map
library provides the support necessary for multidisciplinary applications. It does so
by implementing a flexible group mechanism for programs on the Paragon as well
as full support for collective communication and multiple program binaries. This
library was designed to be fast and extensible. An initial implementation is cur-
rently available for the Paragon and similar libraries are in development for other
Parallel machines, including the Thinking Machines CM-5.

7.0 Acknowledgments

I would like to acknowledge the Message Passing Interface Forum and in particu-
lar the Contexts subcommittee from which I derived many of the ideas for this
library. I would also like to acknowledge Eric Barszcz and Sisira Weeratunga for
providing information on the requirements for the library and for testing it. Finally,
I wish to thank Intel’s Supercomputer Systems Division for providing up-to-date
source code for the NX message passing library. Without this support, my job
would have been much more difficult.

8.0 References

[Bar91] E. Barszcz,Intercube Communication for the iPSC/860, NASA Ames
Research Center, Report Number RNR-91-030, October 1991.

[BaW93] E. Barszcz, S. Weeratunga, and E. Pramono,A Model for Executing
Multidisciplinary and Multizonal Programs, NASA Ames Research
Center, Report Number RNR-93-009, March 1993.

15

[Int91] Intel, Paragon XP/S Product Overview, Intel Corporation,Supercom-
puter Systems Division, Beaverton, OR, 1991

[TrM93] B. Traversat, D. McNab, B. Nitzberg, and S. Fineberg, “Evaluation
metrics for the Intel Paragon XP/S-15,”Intel Supercomputer Users’
Group 1993 Annual North America User’s Conference, St. Louis, MO,
October 1993, to appear.

16

���������	��
���
�������������������������
���� �!�"���#
����	$��&%'�(�
���"$*)+����
,�"�"$�
����-
���. ��
/�10,�������	��%2�3
�45�(��%6$����6���"�
���7������
,89);:-�1�<����)1�7
/�=
,�*��
�$��������".7
/�()1���"�1����$*���
����������
,�"�"$�
�������
,
,��
,��
,��0����1��45��.7�&
�);�3�����-
/�&>
)1. ����)1$�?@$���$����A�B��
����"�=C!�D����$����E���(���"$*)F�F��
,��G2���"�10IH
JLKNMPORQ;S"T

U=VXW QYT

JLKNMPORQ;S"T
U=VXW QYT

Z\[([(]*^�_ Q;S�Ta`X`

